head(rowData(colon_data))
DataFrame with 6 rows and 10 columns
source type score phase gene_id gene_type
<factor> <factor> <numeric> <integer> <character> <character>
ENSG00000000003.15 HAVANA gene NA NA ENSG00000000003.15 protein_coding
ENSG00000000005.6 HAVANA gene NA NA ENSG00000000005.6 protein_coding
ENSG00000000419.13 HAVANA gene NA NA ENSG00000000419.13 protein_coding
ENSG00000000457.14 HAVANA gene NA NA ENSG00000000457.14 protein_coding
ENSG00000000460.17 HAVANA gene NA NA ENSG00000000460.17 protein_coding
ENSG00000000938.13 HAVANA gene NA NA ENSG00000000938.13 protein_coding
gene_name level hgnc_id havana_gene
<character> <character> <character> <character>
ENSG00000000003.15 TSPAN6 2 HGNC:11858 OTTHUMG00000022002.2
ENSG00000000005.6 TNMD 2 HGNC:17757 OTTHUMG00000022001.2
ENSG00000000419.13 DPM1 2 HGNC:3005 OTTHUMG00000032742.2
ENSG00000000457.14 SCYL3 2 HGNC:19285 OTTHUMG00000035941.6
ENSG00000000460.17 C1orf112 2 HGNC:25565 OTTHUMG00000035821.9
ENSG00000000938.13 FGR 2 HGNC:3697 OTTHUMG00000003516.3
gene_names <- rowData(colon_data)$gene_name
matched_genes <- significant_gene_names[significant_gene_names %in% gene_names]
print(matched_genes)
expr_data_filtered <- assay(colon_data)[rowData(colon_data)$gene_name %in% matching_genes_upper, , drop = FALSE]
print(expr_data_filtered)
댓글
댓글 쓰기