FGESA analysis
library(dplyr) library(ggplot2) library(fgsea) # Step 1: Compute a combined score using avg_log2FC and p-value ranked_genes1 <- sheet4_data %>% dplyr::mutate(combined_score = avg_log2FC * -log10(p_val)) %>% # Create the combined score dplyr::arrange(desc(combined_score)) %>% # Rank by the combined score dplyr::mutate(gene_id = gene) %>% dplyr::select(gene_id, combined_score) # Step 2: Convert the ranked genes into a named vector for GSEA ranked_genes_vector <- setNames(ranked_genes1$combined_score, ranked_genes1$gene_id) # Step 3: Load Hallmark pathways using msigdbr install.packages("msigdbr") library(msigdbr) hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H") # Step 4: Prepare gene sets for GSEA hallmark_sets_list <- hallmark_sets %>% split(.$gs_name) %>% lapply(function(x) x$gene_symbol) # Step 5: Run GSEA with the new ranking gsea_results <- fgsea(...